Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Rehabil Sci ; 5: 1305180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450205

RESUMO

Current strategies for teaching evacuation methods in private seniors' residences (PSR) and long-term care (LTCH) homes may pose risks to people with disabilities (PWD) and seniors' physical and psychological health. This study aimed to address the following questions: (1) Which are the current fire evacuation learning strategies used with PWD or seniors? (2) What are the barriers and facilitators for PWD and seniors' during fire evacuation and learning strategies in PSR and LTCH? (3) What is the existing equipment that could be used with PWD seniors?. A scoping review of grey and scientific literature was done in six databases and Google scholar. Additional information was found on Québec government websites. This review identified 13 scientific papers and 22 documents. Twenty barriers (personal = 9, environmental = 11), and 14 facilitators (personal = 4, environmental = 10) were extracted. The current fire evacuation learning strategies currently used can be grouped into three categories: drills; training; promotion of a fire safety plan. Six types of evacuation equipment were found; however, their use has been scarcely documented. Safety for seniors during fire evacuation is still an important issue to be improved. Increasing awareness and creating new practices and tools that consider the strengths and difficulties of seniors seems to be a promising avenue for improving evacuation.

2.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396969

RESUMO

Calcific aortic valve disease (CAVD) is characterized by the fibrosis and mineralization of the aortic valve, which leads to aortic stenosis and heart failure. At the cellular level, this is due to the osteoblastic-like differentiation of valve interstitial cells (VICs), resulting in the calcification of the tissue. Unfortunately, human VICs are not readily available to study CAVD pathogenesis and the implicated mechanisms in vitro; however, adipose-derived stromal/stem cells (ASCs), carrying the patient's specific genomic features, have emerged as a promising cell source to model cardiovascular diseases due to their multipotent nature, availability, and patient-specific characteristics. In this study, we describe a comprehensive transcriptomic analysis of tissue-engineered, scaffold-free, ASC-embedded mineralized tissue sheets using bulk RNA sequencing. Bioinformatic and gene set enrichment analyses revealed the up-regulation of genes associated with the organization of the extracellular matrix (ECM), suggesting that the ECM could play a vital role in the enhanced mineralization observed in these tissue-engineered ASC-embedded sheets. Upon comparison with publicly available gene expression datasets from CAVD patients, striking similarities emerged regarding cardiovascular diseases and ECM functions, suggesting a potential link between ECM gene expression and CAVDs pathogenesis. A matrisome-related sub-analysis revealed the ECM microenvironment promotes the transcriptional activation of the master gene runt-related transcription factor 2 (RUNX2), which is essential in CAVD development. Tissue-engineered ASC-embedded sheets with enhanced mineralization could be a valuable tool for research and a promising avenue for the identification of more effective aortic valve replacement therapies.


Assuntos
Valvopatia Aórtica , Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , Humanos , Estenose da Valva Aórtica/metabolismo , Calcinose/metabolismo , Valvopatia Aórtica/metabolismo , Células-Tronco/metabolismo , Células Cultivadas
3.
3D Print Addit Manuf ; 10(5): 869-886, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886415

RESUMO

A prominent obstacle in scaling up tissue engineering technologies for human applications is engineering an adequate supply of oxygen and nutrients throughout artificial tissues. Sugar glass has emerged as a promising 3D-printable, sacrificial material that can be used to embed perfusable networks within cell-laden matrices to improve mass transfer. To characterize and optimize a previously published sugar ink, we investigated the effects of sucrose, glucose, and dextran concentration on the glass transition temperature (Tg), printability, and stability of 3D-printed sugar glass constructs. We identified a sucrose ink formulation with a significantly higher Tg (40.0 ± 0.9°C) than the original formulation (sucrose-glucose blend, Tg = 26.2 ± 0.4°C), which demonstrated a pronounced improvement in printability, resistance to bending, and final print stability, all without changing dissolution kinetics and decomposition temperature. This formulation allowed printing of 10-cm-long horizontal cantilever filaments, which can enable the printing of complex vascular segments along the x-, y-, and z-axes without the need for supporting structures. Vascular templates with a single inlet and outlet branching into nine channels were 3D printed using the improved formulation and subsequently used to generate perfusable alginate constructs. The printed lattice showed high fidelity with respect to the input geometry, although with some channel deformation after alginate casting and gelation-likely due to alginate swelling. Compared with avascular controls, no significant acute cytotoxicity was noted when casting pancreatic beta cell-laden alginate constructs around improved ink filaments, whereas a significant decrease in cell viability was observed with the original ink. The improved formulation lends more flexibility to sugar glass 3D printing by facilitating the fabrication of larger, more complex, and more stable sacrificial networks. Rigorous characterization and optimization methods for improving sacrificial inks may facilitate the fabrication of functional cellular constructs for tissue engineering, cellular biology, and other biomedical applications.

4.
Small ; 19(30): e2206644, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36965146

RESUMO

Hydrogels are widely used as cell scaffolds in several biomedical applications. Once implanted in vivo, cell scaffolds must often be visualized, and monitored overtime. However, cell scaffolds appear poorly contrasted in most biomedical imaging modalities such as magnetic resonance imaging (MRI). MRI is the imaging technique of choice for high-resolution visualization of low-density, water-rich tissues. Attempts to enhance hydrogel contrast in MRI are performed with "negative" contrast agents that produce several image artifacts impeding the delineation of the implant's contours. In this study, a magnetic ink based on ultra-small iron oxide nanoparticles (USPIONs; <5 nm diameter cores) is developed and integrated into biocompatible alginate hydrogel used in cell scaffolding applications. Relaxometric properties of the magnetic hydrogel are measured, as well as biocompatibility and MR-visibility (T1 -weighted mode; in vitro and in vivo). A 2-week MR follow-up study is performed in the mouse model, demonstrating no image artifacts, and the retention of "positive" contrast overtime, which allows very precise delineation of tissue grafts with MRI. Finally, a 3D-contouring procedure developed to facilitate graft delineation and geometrical conformity assessment is applied on an inverted template alginate pore network. This proof-of-concept establishes the possibility to reveal precisely engineered hydrogel structures using this USPIONs ink high-visibility approach.


Assuntos
Nanopartículas , Engenharia Tecidual , Camundongos , Animais , Seguimentos , Tinta , Alicerces Teciduais/química , Imageamento por Ressonância Magnética/métodos , Hidrogéis/química , Meios de Contraste , Alginatos/química
5.
Sci Rep ; 13(1): 3001, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810756

RESUMO

Entirely biological human tissue-engineered blood vessels (TEBV) were previously developed for clinical use. Tissue-engineered models have also proven to be valuable tools in disease modelling. Moreover, there is a need for complex geometry TEBV for study of multifactorial vascular pathologies, such as intracranial aneurysms. The main goal of the work reported in this article was to produce an entirely human branched small-caliber TEBV. The use of a novel spherical rotary cell seeding system allows effective and uniform dynamic cell seeding for a viable in vitro tissue-engineered model. In this report, the design and fabrication of an innovative seeding system with random spherical 360° rotation is described. Custom made seeding chambers are placed inside the system and hold Y-shaped polyethylene terephthalate glycol (PETG) scaffolds. The seeding conditions, such as cell concentration, seeding speed and incubation time were optimized via count of cells adhered on the PETG scaffolds. This spheric seeding method was compared to other approaches, such as dynamic and static seeding, and clearly shows uniform cell distribution on PETG scaffolds. With this simple to use spherical system, fully biological branched TEBV constructs were also produced by seeding human fibroblasts directly on custom-made complex geometry PETG mandrels. The production of patient-derived small-caliber TEBVs with complex geometry and optimized cellular distribution all along the vascular reconstructed may be an innovative way to model various vascular diseases such as intracranial aneurysms.


Assuntos
Aneurisma Intracraniano , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais , Vasos Sanguíneos , Células Cultivadas
6.
J Biomed Mater Res A ; 111(5): 688-700, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680491

RESUMO

The long-term success of intraosseous transcutaneous amputation prostheses (ITAPs) mainly relies on dermal attachment of skin cells to the implant. Otherwise, bacteria can easily penetrate through the interface between the implant and the skin. Therefore, infection at this implant/skin interface remains a significant complication in orthopedic surgeries in which these prostheses are required. Two main strategies were investigated to prevent these potential infection problems which consist in either establishing a strong sealing at the skin/implant interface or on eradicating infections by killing bacteria. In this work, two adhesion peptides, either KRGDS or KYIGSR and one antimicrobial peptide, Magainin 2 (Mag 2), were covalently grafted via phosphonate anchor arms to the surface of the Ti6Al4V ELI (extra low interstitials) material, commonly used to manufacture ITAPs. X-ray photoelectron spectroscopy, contact angle, and confocal microscopy analyses enabled to validate the covalent and stable grafting of these three peptides. Dermal fibroblasts cultures on bare Ti6Al4V ELI surfaces and functionalized ones displayed a good cell adhesion and proliferation on all samples. However, cell spreading and viability appeared to be improved on grafted surfaces, especially for those conjugated with KRGDS and Mag 2. Moreover, the dermal sheet attachment, was significantly higher on surfaces functionalized with Mag 2 as compared to the other surfaces. Therefore, the surface functionalization with the antimicrobial peptide Mag 2 seems to be the best approach for the targeted application, as it could play a dual role, inducing a strong skin adhesion while limiting infections on Ti6Al4V ELI materials.


Assuntos
Próteses e Implantes , Titânio , Titânio/química , Adesão Celular , Peptídeos , Amputação Cirúrgica , Peptídeos Antimicrobianos , Propriedades de Superfície
7.
NPJ Vaccines ; 7(1): 172, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36543794

RESUMO

In recent years, tattooing technology has shown promising results toward evaluating vaccines in both animal models and humans. However, this technology has some limitations due to variability of experimental evaluations or operator procedures. The current study evaluated a device (intradermal oscillating needle array injection device: IONAID) capable of microinjecting a controlled dose of any aqueous vaccine into the intradermal space. IONAID-mediated administration of a DNA-based vaccine encoding the glycoprotein (GP) from the Ebola virus resulted in superior T- and B-cell responses with IONAID when compared to single intramuscular (IM) or intradermal (ID) injection in mice. Moreover, humoral immune responses, induced after IONAID vaccination, were significantly higher to those obtained with traditional passive DNA tattooing in guinea pigs and rabbits. This device was well tolerated and safe during HIV vaccine delivery in non-human primates (NHPs), while inducing robust immune responses. In summary, this study shows that the IONAID device improves vaccine performance, which could be beneficial to the animal and human health, and importantly, provide a dose-sparing approach (e.g., monkeypox vaccine).

8.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955704

RESUMO

Every year, thousands of aortic valve replacements must take place due to valve diseases. Tissue-engineered heart valves represent promising valve substitutes with remodeling, regeneration, and growth capabilities. However, the accurate reproduction of the complex three-dimensional (3D) anatomy of the aortic valve remains a challenge for current biofabrication methods. We present a novel technique for rapid fabrication of native-like tricuspid aortic valve scaffolds made of an alginate-based hydrogel. Using this technique, a sodium alginate hydrogel formulation is injected into a mold produced using a custom-made sugar glass 3D printer. The mold is then dissolved using a custom-made dissolving module, revealing the aortic valve scaffold. To assess the reproducibility of the technique, three scaffolds were thoroughly compared. CT (computed tomography) scans showed that the scaffolds respect the complex native geometry with minimal variations. The scaffolds were then tested in a cardiac bioreactor specially designed to reproduce physiological flow and pressure (aortic and ventricular) conditions. The flow and pressure profiles were similar to the physiological ones for the three valve scaffolds, with small variabilities. These early results establish the functional repeatability of this new biofabrication method and suggest its application for rapid fabrication of ready-to-use cell-seeded sodium alginate scaffolds for heart valve tissue engineering.


Assuntos
Alginatos , Hidrogéis , Valva Aórtica , Impressão Tridimensional , Reprodutibilidade dos Testes , Engenharia Tecidual/métodos , Alicerces Teciduais
9.
Biomed Mater ; 17(5)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35950736

RESUMO

The increasing need for tissue substitutes in reconstructive surgery spurs the development of engineering methods suited for clinical applications. Cell culture and tissue production traditionally require the use of fetal bovine serum (FBS) which is associated with various complications especially from a translational perspective. Using the self-assembly approach of tissue engineering, we hypothesized that all important parameters of tissue reconstruction can be maintained in a production system devoid of FBS from cell extraction to tissue reconstruction. We studied two commercially available serum-free medium (SFM) and xenogen-free serum-free medium (XSFM) for their impact on tissue reconstruction using human adipose-derived stem/stromal cells (ASCs) in comparison to serum-containing medium. Both media allowed higher ASC proliferation rates in primary cultures over five passages compared with 10% FBS supplemented medium while maintaining high expression of mesenchymal cell markers. For both media, we evaluated extracellular matrix production and deposition necessary to engineer manipulatable tissues using the self-assembly approach. Tissues produced in SFM exhibited a significantly increased thickness (up to 6.8-fold) compared with XSFM and FBS-containing medium. A detailed characterization of tissues produced under SFM conditions showed a substantial 50% reduction of production time without compromising key tissue features such as thickness, mechanical resistance and pro-angiogenic secretory capacities (plasminogen activator inhibitor 1, hepatocyte growth factor, vascular endothelial growth factor, angiopoietin-1) when compared to tissues produced in the control FBS-containing medium. Furthermore, we compared ASCs to the frequently used human dermal fibroblasts (DFs) in the SFM culture system. ASC-derived tissues displayed a 2.4-fold increased thickness compared to their DFs counterparts. In summary, we developed all-natural human substitutes using a production system compatible with clinical requirements. Under culture conditions devoid of bovine serum, the resulting engineered tissues displayed similar and even superior structural and functional properties over the classic FBS-containing culture conditions with a considerable 50% shortening of production time.


Assuntos
Técnicas de Cultura de Células , Fator A de Crescimento do Endotélio Vascular , Tecido Adiposo , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Tecido Conjuntivo , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
J Occup Rehabil ; 32(4): 790-802, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35604529

RESUMO

PURPOSE: This study aims to paint a picture of the factors that influence the process of rehabilitation, return, and stay at work, for aging workers who have suffered an occupational injury. METHODS: Based on a descriptive interpretative research design, the authors conducted interviews with 23 participants (i.e., aging workers, workers' representatives, employers, insurers, and rehabilitation professionals) to gather their perspectives. Qualitative data was analyzed through thematic analysis. RESULTS: Fifteen factors related to the worker, health system, workplace, or compensation system were identified. These factors prevail during rehabilitation, return to work, stay at work, or the entire process. CONCLUSIONS: This study contributes to the advancement of knowledge regarding three main ideas: (1) the importance of not placing the responsibility on the worker in this complex process, (2) the key role of the compensation system, and (3) the necessity of transforming work to reduce ageism.


Assuntos
Traumatismos Ocupacionais , Humanos , Traumatismos Ocupacionais/reabilitação , Retorno ao Trabalho , Canadá , Pesquisa Qualitativa , Local de Trabalho , Envelhecimento , Indenização aos Trabalhadores
11.
Front Bioeng Biotechnol ; 9: 674125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124024

RESUMO

Transplantation of hydrogel-encapsulated pancreatic islets is a promising long-term treatment for type 1 diabetes that restores blood glucose regulation while providing graft immunoprotection. Most human-scale islet encapsulation devices that rely solely on diffusion fail to provide sufficient surface area to meet islet oxygen demands. Perfused macroencapsulation devices use blood flow to mitigate oxygen limitations but increase the complexity of blood-device interactions. Here we describe a human-scale in vitro perfusion system to study hemocompatibility and performance of islet-like cell clusters (ILCs) in alginate hydrogel. A cylindrical perfusion device was designed for multi-day culture without leakage, contamination, or flow occlusion. Rat blood perfusion was assessed for prothrombin time and international normalized ratio and demonstrated no significant change in clotting time. Ex vivo perfusion performed with rats showed patency of the device for over 100 min using Doppler ultrasound imaging. PET-CT imaging of the device successfully visualized metabolically active mouse insulinoma 6 ILCs. ILCs cultured for 7 days under static conditions exhibited abnormal morphology and increased activated caspase-3 staining when compared with the perfused device. These findings reinforce the need for convective transport in macroencapsulation strategies and offer a robust and versatile in vitro system to better inform preclinical design.

12.
J Biomed Mater Res A ; 109(11): 2187-2198, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33931940

RESUMO

Intraosseous transcutaneous amputation prosthesis is a new approach in orthopedic implants that overcomes socket prosthesis problems. Its long-term performance requires a tight skin-implant seal to prevent infections. In this study, fibronectin (Fn), a widely used adhesion protein, was adsorbed or grafted onto titanium alloy. Fn grafting was performed using two different linking arms, dopamine/glutaric anhydride or phosphonate. The characterization of Fn-modified surfaces showed that Fn grating via phosphonate has led to the highest amount of Fn cell-binding site (RGD, arginine, glycine, and aspartate) available on the surface. Interestingly, cell culture studies revealed a strong correlation between the amount of available RGD ligands and cellular behavior, since enhanced proliferation and spreading of fibroblasts were noticed on Fn-grafted surfaces via phosphonate. In addition, an original in vitro mechanical test, inspired from the real situation, to better predict clinical outcomes after implant insertion, has been developed. Tensile test data showed that the adhesion strength of a bio-engineered dermal tissue was significantly higher around Fn-grafted surfaces via phosphonate, as compared to untreated surfaces. This study sheds light on the importance of an appropriate selection of the linking arm to tightly control the spatial conformation of biomolecules on the material surface, and consequently cell interactions at the interface tissue/implant.


Assuntos
Ligas/química , Materiais Revestidos Biocompatíveis/química , Derme/metabolismo , Fibroblastos/metabolismo , Fibronectinas/química , Implantes Experimentais , Receptores Imunológicos/química , Receptores de Peptídeos/química , Titânio/química , Humanos
13.
Cardiovasc Eng Technol ; 11(1): 84-95, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31667784

RESUMO

PURPOSE: Accurately reproducing physiological and time-varying variables in cardiac bioreactors is a difficult task for conventional control methods. This paper presents a new controller based on a genetic algorithm for the control of a cardiac bioreactor dedicated to the study and conditioning of heart valve substitutes. METHODS: A multi-objective genetic algorithm was designed to obtain an accurate simultaneous reproduction of physiological periodic time functions of the three most relevant variables characterizing the blood flow in the aortic valve. These three controlled variables are the flow rate and the pressures upstream and downstream of the aortic valve. RESULTS: Experimental results obtained with this new algorithm showed an accurate dynamic reproduction of these three controlled variables. Moreover, the controller can react and adapt continuously to changes happening over time in the cardiac bioreactor, which is a major advantage when working with living biological valve substitutes. CONCLUSION: The strong non-linear interaction that exists between the three controlled variables makes it difficult to obtain a precise control of any of these, let alone all three simultaneously. However, the results showed that this new control algorithm can efficiently overcome such difficulties. In the particular field of bioreactors reproducing the cardiovascular environment, such a flexible, versatile and accurate reproduction of these three interdependent controlled variables is unprecedented.


Assuntos
Algoritmos , Valva Aórtica/fisiologia , Bioprótese , Reatores Biológicos , Pressão Sanguínea , Implante de Prótese de Valva Cardíaca/instrumentação , Próteses Valvulares Cardíacas , Engenharia Tecidual/instrumentação , Valva Aórtica/transplante , Velocidade do Fluxo Sanguíneo , Células Cultivadas , Humanos , Mecanotransdução Celular , Estresse Mecânico , Fatores de Tempo , Técnicas de Cultura de Tecidos
14.
Heliyon ; 4(7): e00680, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29998199

RESUMO

Alginate-based hydrogels are widely used for the development of biomedical scaffolds in regenerative medicine. The use of sugar glass as a sacrificial template for fluidic channels fabrication within alginate scaffolds remains a challenge because of the premature dissolution of sugar by the water contained in the alginate as well as the relatively slow internal gelation rate of the alginate. Here, a new and simple method, based on a sugar glass fugitive ink loaded with calcium chloride to build sacrificial molds, is presented. We used a dual calcium cross-linking process by adding this highly soluble calcium source in the printed sugar, thus allowing the rapid gelation of a thin membrane of alginate around the sugar construct, followed by the addition of calcium carbonate and gluconic acid δ-lactone to complete the process. This innovative technique results in the rapid formation of "on-demand" alginate hydrogel with complex fluidic channels that could be used in biomedical applications such as highly vascularized scaffolds promoting pathways for nutrients and oxygen to the cells.

15.
ACS Biomater Sci Eng ; 4(11): 3779-3791, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33429595

RESUMO

Surface endothelialization could improve the long-term performance of vascular grafts and stents. We previously demonstrated that aerosol-generated fibronectin-derived peptide micropatterns consisting of GRGDS spots over a WQPPRARI background increase endothelial cell yields in static cultures. We developed a novel fluorophore-tagged RGD peptide (RGD-TAMRA) to visualize cell-surface interactions in real-time. Here, we studied the dynamics of endothelial cell response to laminar flow on these peptide-functionalized surfaces. Endothelial cells were exposed to 22 dyn/cm2 wall shear stress while acquiring time-lapse images. Cell surface coverage and cell alignment were quantified by undecimated wavelet transform multivariate image analysis. Similar to gelatin-coated surfaces, surfaces with uniform RGD-TAMRA distribution led to cell retention and rapid cell alignment (∼63% of the final cell alignment was reached within 1.5 h), contrary to the micropatterned surfaces. The RGD-TAMRA peptide is a promising candidate for endothelial cell retention under flow, and the spray-based micropatterned surfaces are more promising for static cultures.

16.
J Tissue Eng Regen Med ; 11(9): 2479-2489, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27125623

RESUMO

In the clinical and pharmacological fields, there is a need for the production of tissue-engineered small-diameter blood vessels. We have demonstrated previously that the extracellular matrix (ECM) produced by fibroblasts can be used as a scaffold to support three-dimensional (3D) growth of another cell type. Thus, a resistant tissue-engineered vascular media can be produced when such scaffolds are used to culture smooth muscle cells (SMCs). The present study was designed to develop an anisotropic fibroblastic ECM sheet that could replicate the physiological architecture of blood vessels after being assembled into a small diameter vascular conduit. Anisotropic ECM scaffolds were produced using human dermal fibroblasts, grown on a microfabricated substrate with a specific topography, which led to cell alignment and unidirectional ECM assembly. Following their devitalization, the scaffolds were seeded with SMCs. These cells elongated and migrated in a single direction, following a specific angle relative to the direction of the aligned fibroblastic ECM. Their resultant ECM stained for collagen I and III and elastin, and the cells expressed SMC differentiation markers. Seven days after SMCs seeding, the sheets were rolled around a mandrel to form a tissue-engineered vascular media. The resulting anisotropic ECM and cell alignment induced an increase in the mechanical strength and vascular reactivity in the circumferential direction as compared to unaligned constructs. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Prótese Vascular , Proteínas da Matriz Extracelular , Matriz Extracelular , Fibroblastos/metabolismo , Alicerces Teciduais/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/química , Fibroblastos/citologia , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo
17.
Ann Biomed Eng ; 45(2): 427-438, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27510917

RESUMO

Recently, the tubular shape has been suggested as an effective geometry for tissue-engineered heart valves, allowing easy fabrication, fast implantation, and a minimal crimped footprint from a transcatheter delivery perspective. This simple design is well suited for the self-assembly method, with which the only support for the cells is the extracellular matrix they produce, allowing the tissue to be completely free from exogenous materials during its entire fabrication process. Tubular constructs were produced by rolling self-assembled human fibroblast sheets on plastic mandrels. After maturation, the tubes were transferred onto smaller diameter mandrels and allowed to contract freely. This precontraction phase thickened the tissue and prevented further contraction, while improving fusion between the self-assembled layers and aligning the cells circumferentially. When mounted in a pulsed-flow bioreactor, the valves showed good functionality with large leaflets coaptation and opening area. Although physiological aortic flow conditions were not reached, the leaflets could withstand a 1 Hz pulsed flow with a 300 mL/s peak flow rate and a 70 mmHg peak transvalvular pressure. This study shows that the self-assembly method, which has already proven its potential for the production of small diameter vascular grafts, could also be used to achieve functional tubular heart valves.


Assuntos
Reatores Biológicos , Fibroblastos/metabolismo , Próteses Valvulares Cardíacas , Desenho de Prótese , Fluxo Pulsátil , Engenharia Tecidual , Células Cultivadas , Fibroblastos/citologia , Humanos
18.
Biomed Res Int ; 2016: 3762484, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27999795

RESUMO

There is a clinical need for tissue-engineered small-diameter (<6 mm) vascular grafts since clinical applications are halted by the limited suitability of autologous or synthetic grafts. This study uses the self-assembly approach to produce a fibroblast-derived decellularized vascular scaffold (FDVS) that can be available off-the-shelf. Briefly, extracellular matrix scaffolds were produced using human dermal fibroblasts sheets rolled around a mandrel, maintained in culture to allow for the formation of cohesive and three-dimensional tubular constructs, and decellularized by immersion in deionized water. The FDVSs were implanted as an aortic interpositional graft in six Sprague-Dawley rats for 6 months. Five out of the six implants were still patent 6 months after the surgery. Histological analysis showed the infiltration of cells on both abluminal and luminal sides, and immunofluorescence analysis suggested the formation of neomedia comprised of smooth muscle cells and lined underneath with an endothelium. Furthermore, to verify the feasibility of producing tissue-engineered blood vessels of clinically relevant length and diameter, scaffolds with a 4.6 mm inner diameter and 17 cm in length were fabricated with success and stored for an extended period of time, while maintaining suitable properties following the storage period. This novel demonstration of the potential of the FDVS could accelerate the clinical availability of tissue-engineered blood vessels and warrants further preclinical studies.


Assuntos
Bioprótese , Implante de Prótese Vascular , Prótese Vascular , Fibroblastos/metabolismo , Engenharia Tecidual/métodos , Remodelação Vascular , Animais , Fibroblastos/patologia , Humanos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Alicerces Teciduais
19.
Innovations (Phila) ; 11(5): 315-320, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27828807

RESUMO

OBJECTIVE: This work's objective was to identify the determinants of conversion of minimally invasive coronary artery bypass grafting to sternotomy, with and without cardiopulmonary bypass assistance, and to compare clinical outcomes in patients who needed conversion. METHODS: This is a prospectively collected data on patients who underwent minimally invasive coronary bypass done by a single surgeon from February 2005 to September 2014. Statistical analyses were expressed as mean values ± standard deviation or proportions. RESULTS: The total number of patients was 266, with an average age of 62 years. The median number of grafted territories was 2, higher in those with pump assistance (median, 3 grafts; P ≤ 0.01). Predictors for use of cardiopulmonary bypass included diabetes, 3-vessel disease, left circumflex involvement, and small target vessels (P < 0.05). The rate for sternotomy conversion was 3.8%. Risk factors for conversion to sternotomy included smoking, preoperative bradycardia (<50 beats per minute), low intraoperative ejection fraction, inability to tolerate one-lung ventilation, inadequate surgical exposure, and hemodynamic instability. Postoperative complications included superficial thoracotomy infection (3%), sternotomy infection (10%), new atrial fibrillation (3%), and need for blood transfusion (14%). Twelve patients (5%) developed left-sided pleural effusion that required drainage. There were no perioperative deaths, major adverse cardiac event, or stroke. CONCLUSIONS: Minimally invasive coronary bypass grafting with conversion to sternotomy and use of cardiopulmonary bypass is safe. Conversions may be alleviated by an effort to optimize modifiable risk factors and the adequacy of surgical exposure. These data may help develop objective selection criteria to identify patients who are excellent candidates for the procedure.


Assuntos
Ponte de Artéria Coronária/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Esternotomia/métodos , Toracotomia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento
20.
Acta Biomater ; 24: 209-19, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26086693

RESUMO

There is a clinical need for small-diameter vascular substitutes, notably for coronary and peripheral artery bypass procedures since these surgeries are limited by the availability of grafting material. This study reports the characterization of a novel autologous tissue-engineered vascular substitute (TEVS) produced in 10weeks exclusively from human adipose-derived stromal cells (ASC) self-assembly, and its comparison to an established model made from dermal fibroblasts (DF). Briefly, ASC and DF were cultured with ascorbate to form cell sheets subsequently rolled around a mandrel. These TEVS were further cultured as a maturation period before undergoing mechanical testing, histological analyses and endothelialization. No significant differences were measured in burst pressure, suture strength, failure load, elastic modulus and failure strain according to the cell type used to produce the TEVS. Indeed, ASC- and DF-TEVS both displayed burst pressures well above maximal physiological blood pressure. However, ASC-TEVS were 1.40-fold more compliant than DF-TEVS. The structural matrix, comprising collagens type I and III, fibronectin and elastin, was very similar in all TEVS although histological analysis showed a wavier and less dense collagen matrix in ASC-TEVS. This difference in collagen organization could explain their higher compliance. Finally, human umbilical vein endothelial cells (HUVEC) successfully formed a confluent endothelium on ASC and DF cell sheets, as well as inside ASC-TEVS. Our results demonstrated that ASC are an alternative cell source for the production of TEVS displaying good mechanical properties and appropriate endothelialization.


Assuntos
Tecido Adiposo/metabolismo , Prótese Vascular , Derme/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Fibroblastos/metabolismo , Alicerces Teciduais/química , Tecido Adiposo/citologia , Células Cultivadas , Derme/citologia , Feminino , Fibroblastos/citologia , Humanos , Masculino , Células Estromais/citologia , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA